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Abstract 

In the assessment of autonomic function by heart rate variability (HRV), the framework that the power of high-
frequency component or its surrogate indices reflects parasympathetic activity, while the power of low-frequency 
component or LF/HF reflects sympathetic activity has been used as the theoretical basis for the interpretation of HRV. 
Although this classical framework has contributed greatly to the widespread use of HRV for the assessment of auto-
nomic function, it was obtained from studies of short-term HRV (typically 5‑10 min) under tightly controlled condi-
tions. If it is applied to long-term HRV (typically 24 h) under free-running conditions in daily life, erroneous conclusions 
could be drawn. Also, long-term HRV could contain untapped useful information that is not revealed in the classical 
framework. In this review, we discuss the limitations of the classical framework and present studies that extracted 
autonomic function indicators and other useful biomedical information from long-term HRV using novel approaches 
beyond the classical framework. Those methods include non-Gaussianity index, HRV sleep index, heart rate turbu-
lence, and the frequency and amplitude of cyclic variation of heart rate.
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Introduction
Although the analysis of HRV is widely used in various 
fields as a non-invasive assessment of autonomic func-
tion, it has the potential to draw inappropriate conclu-
sions when applied beyond its limitations. This is mainly 
due to the uncritical use of HRV interpretations based on 
the simple framework that the power of high-frequency 
(HF, 0.15‑0.4 Hz) HRV component or its surrogate 
indices (rMSSD and pNN50) reflects parasympathetic 
activity, while the relative power of low-frequency (LF, 
0.04‑0.15 Hz) component or LF-to-HF power ratio (LF/

HF) reflects sympathetic activity. This classical frame-
work has been derived from studies of short-term HRV 
(typically 5‑10 min) under tightly controlled conditions 
of measurement environment, body position, physi-
cal activity, and respiratory state [1–3]. Consequently, 
applying the framework to HRV where these conditions 
are not met, especially long-term HRV (typically 24 h) 
obtained under free-running conditions with wearable 
sensors, may lead to erroneous conclusions, and also 
prevent the proper extraction of useful information con-
tained in the HRV. The use of the classical framework 
needs to be more strictly limited, and it is an important 
issue for the development of HRV researches [4].

Long-term HRV under free-running conditions is 
thought to consist of at least five components of vari-
ability: first, circadian and ultradian rhythms, including 
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LF and HF components; second, 1/f or fractal fluctua-
tion generated by complex neural networks in the brain 
[5, 6]; third, variability caused by various daily physi-
cal and mental activities as well as weather and indoor 
environmental parameters; fourth, variability caused by 
the cardiac pacemaker system itself, including heart rate 
fragmentation (HRF) [7–9]; and fifth, variability in sinus 
rhythm caused by spontaneous accidental events such 
as extrasystoles and sleep apnea. In this review, we will 
first describe the problems that could arise in applying 
the classical framework to such long-term HRV and then 
studies that have extracted autonomic function indica-
tors and other useful biomedical information using novel 
approaches beyond the classical framework.

Limitations of classical framework
The evidence supporting the classical framework of HRV 
is as follows. The facts for the relationship between HF 
power and cardiac vagal activity include that (1) transfer 
function analysis of autonomic heart rate controls in an 
isolated canine heart model shows that the LF compo-
nent of HRV is mediated by both sympathetic and vagus 
nerves, while the HF component is mediated solely by 
the vagus nerves [10], (2) the HF component disappears 
when the cardiac vagus nerves are blocked either physi-
cally by heart transplantation [11] or pharmacologically 
by high-dose atropine [1, 12], and (3) in healthy young 
subjects, there is a proportional relationship between 
the HF amplitude under paced breathing and the cardiac 
vagal control that is measured as the change in mean R-R 
interval with pharmacological vagal blockade under com-
plete β-adrenergic blockade [3]. The facts for the rela-
tionship between LF component and sympathetic activity 
include that (1) the increase in LF power with standing 
or head-up tilting, if any, is abolished by beta-blockers 
[1, 13] and (2) the relative LF power and LF/HF increases 
consistently with standing and head-up tilt [2].

The uncritical application of this classical framework 
to long-term HRV under free-running conditions may 
lead to erroneous conclusions. A clear example is the 
relationship between long-term HRV and prognosis after 
acute myocardial infarction (MI). Decreased long-term 
HRV is a predictor of increased risk of post-MI mortal-
ity, and this association is explained by the detrimental 
effects of cardiac vagal dysfunction. However, among 
the spectral components of long-term HRV, including 
ultra-low-frequency (ULF, < 0.00033 Hz), very low fre-
quency (VLF, 0.0033‑0.04 Hz), and LF components, the 
predictive power of decreased HF is the lowest [14]. In 
addition, even though increased sympathetic activity is a 
well-known risk of mortality in post-MI patients, in long-
term HRV, the lower the LF/HF, the higher the risk of 
mortality [15, 16]. These are mainly due to the fact that 

patients with a better prognosis in general have a higher 
level of physical activity and spend more time in a stand-
ing position in daily life, which may decrease HF power 
and increase LF/HF on average. If these observations 
are interpreted in a classical framework, they negate 
the adverse effects of autonomic dysfunction in post-MI 
pathophysiology.

Even when applied to short-term HRV, the classical 
framework has several important limitations. The link 
between the HF component and cardiac parasympathetic 
activity is due to the association between the magnitude 
of respiratory sinus arrhythmia and cardiac parasympa-
thetic activity [17, 18], which requires that the respiratory 
rate is always maintained in the range of 9‑24 beats/min 
(0.15‑0.4 Hz). Even within this range, the magnitude of 
respiratory sinus arrhythmia is inversely proportional to 
the respiratory rate, independent of cardiac parasympa-
thetic activity [19, 20]. In addition to respiratory sinus 
arrhythmias, the contaminations of transient atrial fibril-
lation or other non-autonomically mediated HRV, such 
as HRF [7–9], may also increase the apparent HF power.

There are important limitations to the assessment of 
autonomic function by HRV that should be better recog-
nized. It should be noted, however, that these limitations 
are for the evaluation of autonomic function by HRV 
based on the classical framework, not for the HRV analy-
sis itself.

Assessment of sympathetic function by HRV
Although many studies have used the relative LF power 
or LF/HF as an index of sympathetic activity or sympa-
thetic predominance in sympatho-vagal balance, the 
only evidence that supports this interpretation is the 
postural increase of these indices, and on the contrary, 
much evidence has been accumulated to reject this 
hypothesis. Studies using sympathetic indices such as 
muscle sympathetic activity [21, 22] and positron emis-
sion tomographic neuroimaging [23, 24] have rejected 
any relationship between LF power or LF/HF and sym-
pathetic activity. As long as the classical framework is 
used, reliable assessment of sympathetic function by 
HRV should be considered impossible. So, does HRV not 
contain information about sympathetic nervous activity? 
Probably it does. Two examples that suggest this are the 
relationship between individual differences in the pos-
tural LF response of short-term HRV and prognosis, and 
the relationship between the non-Gaussian index λ of 
long-term HRV and prognosis of cardiovascular diseases.

LF rise of short‑term HRV
Previous studies have reported that standing or head-up 
tilt increases LF power in normal subjects under sponta-
neous breathing [1], but LF power under paced breathing 
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increases in a part of normal subjects (about 20%) and 
remains unchanged or even decreases in the rest of sub-
jects (Fig. 1 upper panel) [25].

In a prospective study of the prognostic value of short-
term HRV in patients with stable coronary artery disease 
(CAD) [25], we analyzed postural LF response to head-up 

Fig. 1  Distributions in changes in LF power with head-up tilting among 90 healthy subjects (upper panel) and among 250 patients undergoing 
coronary angiography (lower panel). Vertical-dashed lines indicate the cutoff points for the trisection of the LF response into large drop (D2, n = 82), 
small drop (D1, n = 83), and rise (R, n = 85) in angiographic patients. With the same cutoff, healthy subjects divided into D2 (n = 28), D1 (41), and R 
(n = 21). Out of 250 patients, 25 died during 99 months of follow-up. Letters at the top of the bars in the upper panel indicate the cause of death of 
individual patients: A, acute myocardial infarction (MI); F, fatal stroke; N, noncardiac causes; S, sudden cardiac death. Modified Fig. 2 of reference [25]
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tilting under paced breathing in 250 patients who under-
went elective coronary angiography. A postural increase 
in LF power (LF rise) was observed in 85 (34%) patients 
(group R), while a small drop was observed in 83 (33%) 
patients (group D1) and a large drop in 82 (33%) patients 
(group D2). During a subsequent follow-up period of 99 
months, there were 13 cardiac deaths and 12 noncar-
diac deaths (Fig.  1 lower panel). The three groups did 
not differ in terms of clinical features or CAD severity at 
baseline or coronary interventions during the follow-up 
period; however, cardiac mortality rates during the 99 
months were 12%, 6%, and 0% in groups R, D1, and D2, 
respectively. The difference was enhanced when analyzed 
excluding 64 patients treated with β-blockers during the 
follow-up period (15%, 7%, and 0%, respectively). These 
observations indicate that the LF rise is a predictor of 
cardiac mortality risk in patients with stable CAD.

Together with previous observations that β-adrenergic 
blockade suppresses LF rise [1, 13], LF rise is a marker 
of posture-induced sympathetic overactivation, which 
may lead to poor prognosis in patients with stable CAD. 
However, the LF component in upright posture is medi-
ated by both sympathetic and parasympathetic nerves 
[1]. Thus, LF rise could be due partly to a decrease in pos-
ture-induced decline in parasympathetic activity, which 
in turn could be due to a decrease in parasympathetic 
response reserve in the supine position. For either case, 
LF rise reflects greater dependence on sympathetic acti-
vation than on vagal withdrawal in the autonomic neural 
regulation of the postural heart rate response.

Non‑Gaussianity of long‑term HRV
Non-Gaussianity index (λ) is an index of long-term 
HRV developed by Kiyono et  al. [26–28]. It character-
izes increased probability of the large abrupt heart rate 
deviations from its trend (Fig.  2). To calculate the λ, in 
the detrended instantaneous heart rate time series, the 
increments of heart rate (the difference between two 
heart rates apart 25 s [in case of λ25s]; when the heart rate 
decreases, the increment is negative) are measured at all 
time points. Then, the relationship between the magni-
tude of the heart rate increment and its probability of 
occurrence is expressed as a probability density function 
(PDF). The PDF of the heart rate increment is known to 
show a non-Gaussian distribution, and λ represents the 
degree of deviation from the Gaussian distribution. The 
λ is larger for PDFs with a more peaked center and fat-
ter tails. The fatter tails of the PDF indicate that the more 
frequent large abrupt changes in heart rate occur, com-
pared to smaller changes.

Studies of long-term HRV have reported an associa-
tion between increased non-Gaussianity of HRV and 
increased risk of mortality in patients with congestive 

heart failure (CHF) [29] and in patients after MI [30] 
particularly those with preserved left ventricular ejec-
tion fraction [31]. In these and other studies, λ showed 
unique properties that differentiate it from other 
HRV indices [32]. First, for the major time-domain 
HRV indices (SDNN, rMSSD, HRV triangular index 
[33], deceleration capacity [34], etc.) and frequency-
domain HRV indices (ULF, VLF, LF, LF/HF, etc.), their 
decreases predict mortality risk, whereas for λ, its 
increase predicts mortality risk [29, 30]. Second, in 
a big data analysis (n = 265,291) for the redundancy 
among long-term HRV indices, traditional long-term 
HRV indices (SDNN, VLF, deceleration capacity, and 
scaling exponent α1 [6, 16]) showed high similarity 
(assessed by mutual explained variance) and formed 
a single cluster, whereas λ25s had the lowest similarity 
with other HRV indices and was located far from the 
clusters of other indices [32]. These traditional HRV 
indices primarily reflect vagal function [33–35]. Third, 
although the predictive power of traditional HRV indi-
ces for mortality risk in patients with CHF is low to 
moderate at best [36–39], λ detects fundamental char-
acteristics of HRV in CHF and its increase significantly 
and independently reflect the increased risk for death 
in these patients [29]. Fourth, although decreases in 
conventional long-term HRV indices [16, 34, 40] and 
other indices of parasympathetic dysfunctions [15, 41] 
predict increased risk of both cardiac and non-cardiac 
deaths in post-MI patients, increased λ25s predicts 
exclusively cardiac death but not non-cardiac death 
[30]. Finally, λ25s is lower in post-MI patients taking 
β-blockers compared with those not taking β-blockers 
[30]. In CHF, a state of sympathetic cardiac overdrive, 
there is an increase in λ25s along with a decrease in the 
HRV index reflecting vagal dysfunction, whereas in 
multiple system atrophy, a neurodegenerative disorder 
associated with preganglionic sympathetic failure [42] 
and Parkinson’s disease, which is often accompanied by 
postganglionic sympathetic failure [43, 44], there is a 
decrease in the HRV index reflecting vagal dysfunction, 
but no increase in λ25s [28]. These facts indicate that 
an increase in non-Gaussianity index λ25s of long-term 
HRV may be a marker of sympathetic cardiac overdrive.

Analysis of HRV associated with physiological events
During long-term monitoring, both physiological and 
pathophysiological events may occur incidentally and 
leave a footprint on HRV. HRV indices derived from the 
classical framework may also be affected by such events, 
but the changes are often non-specific and not useful for 
their accurate detection. Several methods of HRV analy-
sis are known to detect such specific events.
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Estimation of sleep stage by HRV
The quality and quantity of sleep is an important fac-
tor in healthcare, but its evaluation often relies on sub-
jective self-assessment. It is desirable to have objective 
indices to estimate accurate durations of sleep and pref-
erably of sleep stages in daily life. In this regard, several 
researchers have attempted to detect sleep and deter-
mine sleep stages by analyzing long-term HRV [45–50]. 
Since it is generally believed that the transition from 
wakefulness to sleep, especially to non-REM (NREM) 
sleep, is accompanied by sympathetic inhibition and 
parasympathetic activation, models using autonomic 
indices of HRV based on the classical framework have 
been proposed. However, the univariate predictive 

power of these indices is not sufficient and there is no 
physiological basis to explain why they distinguish light 
sleep from awake rest.

To resolve this problem, we developed an HRV sleep 
index (Hsi) that detects NREM sleep based on the 
physiological features of cardiorespiratory regulations 
[51]. It is well known that during NREM sleep, breath-
ing becomes more regular as it switches to an involun-
tary mode. Because respiration modulates heart rate 
and generates HF component at respiratory frequency, 
the power of the HF component concentrates on a nar-
rower frequency band as the regularity of the respira-
tory cycle increases. Hsi is calculated for short-segment 
(~5 min) of R-R intervals (Fig.  3). First, in the power 

Fig. 2  Analysis of non-Gaussian heart rate fluctuations in two representative post-MI patients: survivor (A) and cardiac death (B). From the top, 
trend graphs of normal-to-normal R-R interval b(t), standardized time series of heart rate increments Δ25sB(t), and standardized probability density 
functions (PDFs) of heart rate increments P(Δ25sB(t)) with non-Gaussianity index of λ25s. In the middle- and bottom-row panels, gray-shaded areas 
cover ± 3 SD ranges. In the bottom-row panels, solid lines indicate the PDF approximated for the corresponding λ25s values by a non-Gaussian 
model [27]. Compared to the survivor, bursty changes with amplitudes exceeding ±3 SD (gray-shaded areas in the middle-row panels) increase in 
the cardiac death patient, resulting in a sharper peak with fatter tails in the PDF (bottom-row panels) and a larger value of λ25s, which reflects the 
degree of deviation from the Gaussian distribution (dashed lines in the bottom-row panels). Modified Fig. 1 of reference [30]
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spectrum of HRV, the highest peak of HF component is 
detected. Second, the relative power within a frequency 
range of ω around the peak is calculated. Then, Hsi is 
calculated as the area under the curve (AUC) of the rel-
ative power as the function of ω.

Hsi is low during wake and REM sleep and it 
increases during NREM sleep (Figs.  3 and 4). In a 
study of 141 subjects, we analyzed 11,636 consecu-
tive 5-min ECG segments of polysomnographic data. 
Hsi was greater during NREM (mean [SD], 75.1 [8.3] 
%) than wake (61.0 [10.3] %) and REM (62.0 [8.4] %) 
stages. Hsi discriminated NREM sleep from wake and 
REM sleep with an AUC of 0.86 by receiver-operating 
characteristic curve analysis, which was greater than 
those of heart rate (0.64), peak HF power (0.75), LF/
HF (0.77), scaling exponent α (0.77), and actigraphic 
body movement (0.76). With a cutoff > 70%, Hsi 

detected NREM segments with 77% sensitivity and 
80% specificity.

Hsi has strengths not found in other HRV indices. 
Hsi quantifies the spectral shape of the HF component, 
independent of its power. This may be an advantage 
over other HRV indices that are dependent on age [52], 
respiratory rate [19], and health conditions affecting 
autonomic function [33]. The autonomic indices of 
HRV are based on an indirect or relative relationship. 
Although autonomic function and heart rate dynam-
ics are known to change with sleep stage [45, 46], the 
change in these indices from wakefulness to sleep is 
continuous, not discrete, and there is no convincing 
physiological evidence to support the ability to dis-
tinguish light sleep from awake rest. In contrast, Hsi 
was developed based on solid physiological evidence of 
increased respiratory regularity during NREM sleep.

Fig. 3  Detection of sleep onset by HRV during polysomnography in a healthy male subject. From top: hypnogram, body motion (BM) by 
actigraphy, R-R interval (RRI), power spectral density (PSD), and relative power of HF to the integrated width (ω) of the frequency band around the 
HF peak. When the sleep stage changes from wakefulness (W) to NREM (N1, N2, N3), the large BM disappears, a sharp peak appears in the HF band 
(0.15‑0.4 Hz) of the RRI power spectrum, and the Hsi (area under the curve) increases to more than 70%. Modified Fig. 2 of reference [51]
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Screening of sleep apnea by HRV
Obstructive sleep apnea (SA) is a common pathophysio-
logic event during sleep, which affects 26% of adults, with 
10% estimated to have moderate-to-severe disease [53]. 
Obstructive SA, however, is associated with increased 
risk of systemic hypertension [54, 55], atrial fibrillation 
and its recurrence [56–58], stroke [59, 60], sudden car-
diac death during sleep [61, 62], cognitive impairment 
and diminished quality of life [63], and motor vehicle 
crashes [64]. Despite this fact, the majority of patients 
remain undiagnosed and miss out on treatment opportu-
nities. Polysomnography is required for definitive diagno-
sis of SA, but due to its cost and limited resources, there 
is a need for a simple, reliable, and effective way to screen 
high-risk individuals who need a definitive diagnosis.

The episodes of SA cause a characteristic pattern of 
HRV known as cyclic variation of heart rate (CVHR) 
[65]. Since CVHR appears as bradycardia during apnea 
and transient tachycardia during apnea cessation for indi-
vidual apneic episodes, the hourly frequency of CVHR 
(Fcv) can be used as an estimate of the apnea-hypopnea 
index (AHI), which is the hourly frequency of sleep 
apnea and hypopnea and is an indicator of the severity 
of  SA (Fig.  5) [66–72]. To detect CVHR in long-term 

HRV during sleep, we developed an automated algorism 
named Auto-Correlated Wave Detection with Adaptive 
Threshold (ACAT) [67]. In a study of 864 patients who 
underwent a polysomnographic study for suspected 
SA, the Fcv during sleep was correlated with the AHI 
obtained from the simultaneous polysomnography with 
r = 0.84 (Fig. 6). When Fcv > 15/h was used as the cut-
off, patients with AHI > 15 were detected with a sensi-
tivity of 83% and specificity of 88%. Detection of CVHR 
by ambulatory 24-h ECG (Holter monitoring) is already 
used clinically as a screening method for SA [73, 74]. It 
can also be applied to longer ECG monitoring (7 days) 
to reveal night-to-night variability in SA severity that 
is difficult to detect with other methods [75]. Further-
more, this method can be applied to pulse interval data 
obtained with wearable watch-shape pulse wave sensors 
[76], as described below.

Evaluations of autonomic reflex functions by HRV
In order to assess autonomic reflex function, the response 
of peripheral organs to physiological provocation must be 
analyzed. In the case of baroreceptor reflex function, prov-
ocation methods such as the Valsalva maneuver, pharmaco-
logically induced blood pressure changes, and neck suction 

Fig. 4  All-night hypnogram and Hsi in a healthy female subject (age, 28 years). While Hsi is below 70% during wake (W) and REM sleep (marked 
with black in hypnogram), it exceeds 70% in synchrony with the appearance of NREM sleep (N1, N2, and N3)
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and compression are used [77]. During long-term monitor-
ing in daily life, the spontaneous physiological events and 
accidental pathophysiological events may occur, which can 
be used as provocations to assess autonomic reflex func-
tion. Examples of such events are ventricular premature 
contractions (VPCs) and SA episodes, which cause specific 
patterns of HRV named heart rate turbulence (HRT) and 
CHVR, respectively, as the autonomic responses.

Heart rate turbulence (HRT)
HRT refers to the phenomenon that R-R intervals show 
short-term fluctuations after isolated VPCs [41, 78]. In 

normal subjects, HRT consists of an initial brief short-
ening (turbulence onset, TO) followed by a gradual 
elongation (turbulence slope, TS) before it returns the 
pre-VPC baseline [79]. The physiological mechanism of 
the initial shortening is a transient vagal inhibition in 
response to the missed baroreflex afferent input caused 
by hemodynamically inefficient ventricular contraction 
and that of the subsequent gradual elongation is a reflex 
vagal activation caused by a sympathetically mediated 
overshoot of arterial pressure. Therefore, the HRT pat-
tern is blunted in patients with reduced baroreflex, and 
HRT measurement provides an indirect assessment of 
baroreflex.

Fig. 5  Cyclic variation of heart rate (CVHR) detected by the autocorrelated wave detection with adaptive threshold (ACAT) algorithm during a 
polysomnographic examination in a representative subject with obstructive sleep apnea (OSA). Panel B is a closer view of the data in the open box 
in panel A. Vertical bars in panel A and arrows in panel B indicate the temporal positions of detected CVHR. The ACAT algorithm detected the nadirs 
of cyclic dips in interbeat intervals that accompany apnea–hypopnea events. RRI, R–R interval of ECG; SpO2, pulse oximetric arterial blood oxygen 
saturation; Resp, respiration by oronasal airflow. Modified Fig. 1 of reference [68]
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HRT is measured by averaging R-R interval segments 
(from 2 intervals before to 15 intervals after) of >5 iso-
lated VPCs. The VPCs adequate to HRT measurement 
are limited to noninterpolated VPCs with prematurity of 
> 20% and compensatory pause of > 120%, bounded by 17 
preceding and 15 subsequent continuous sinus rhythm 
cycles. TO is quantified as the percentage of R-R interval 
decrement, i.e., the average of two R-R intervals imme-
diately following the compensatory pause minus the 
average of two R-R intervals immediately preceding the 
VPC coupling interval. TS is measured as the maximum 
positive regression slope assessed over any 5 consecu-
tive sinus rhythm R-R intervals within the first 15 sinus 
rhythm R-R intervals after the VPC. Both TO and TS are 
used as indices of vagal baroreflex function. In clinical 
studies, TO < 0% and TS > 2.5 ms/R-R interval are con-
sidered normal.

Several prospective studies confirmed that abnormal 
HRT is a powerful predictor of post-MI mortality [41, 
78], but this method is applicable only to ECG record-
ings under sinus rhythm including > 5 adequate isolated 
VPCs. In the Allostatic State Mapping by Ambulatory 
ECG Repository (ALLSTAR) [80–82], big data of HRV 
in patients undergone Holter 24-h ECG monitoring in 
Japan, isolated VPCs meeting with the requirements for 

HRT were found only in 158,933 (39.8%) out of 399,458 
recordings in adult patients aged > 20 years.

Amplitude of CVHR (Acv)
As mentioned earlier, the frequency of CVHR (Fcv) 
reflects the frequency of SA episodes [67], but CVHR 
itself is a heart rate response provoked by spontaneous 
apneic/hypoxic load caused by SA. CVHR consists of 
bradycardia during apnea and abrupt, transient tachycar-
dia during the cessation of apnea [66]. The mechanism 
of the bradycardia during apnea is thought to include 
an increase in cardiac vagal activity resulting from the 
combined effect of cessation of breathing and hypoxemia 
[83], and that of the tachycardia during apnea cessation is 
thought to include sympathetic activation by hypoxia and 
cardiac vagal suppression associated with arousal, baro-
receptor unloading, and respiratory recovery. In a study 
of 400 patients with SA, Guilleminault et al. [66] observed 
the absence of CVHR in a subgroup of SA patients with 
impaired cardiac autonomic function (heart transplants, 
autonomic neuropathy, and Shy-Drager syndrome). 
They also observed that in SA patients with normal car-
diac autonomic function, intravenous atropine blocked 
CVHR by eliminating the bradycardia component. These 

Fig. 6  Estimation of apnea-hypopnea index (AHI) of polysomnography by the frequency of CVHR (Fcv) obtained from ECG R-R interval in 862 
consecutive subjects with suspected sleep-disordered breathing. Modified Fig. 4 of reference [67]
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indicate that the blunted CVHR can be used as an index 
of impaired cardiac vagal reflex function (Fig. 7).

We studied the predictive value of blunted CVHR 
observed in ambulatory ECG in 717 post-MI patients 
(mortality, 6% during median follow-up for 25 months), 
220 post-MI patients (25.5% mortality during 45 
months), 299 patients with end-stage renal disease 
(ESRD) on chronic hemodialysis (28.1% mortality during 
85 months), and 100 patients with chronic heart failure 

(CHF; 35% mortality during 38 months) [73]. CVHR was 
detected by the ACAT algorithm from night-time ECG 
and Fcv was measured as hourly frequency of CVHR dur-
ing estimated sleep period. The magnitude of CVHR was 
measured as the mean log amplitude (Acv) of CVHR only 
if at least four CVHRs were observed per night, which 
was met by > 96% of patients in all cohorts. Although 
Fcv did not predict mortality in any cohort, decreased 
Acv was a powerful predictor of mortality in all cohort 

Fig. 7  CVHR associated with sleep apnea episodes in a representative patient with normal vagal reflex function (A) and a patient with moderately 
impaired vagal reflex function (B). The blue bars indicate the temporal location of the dip in the R-R interval caused by CVHR. Airflow detected by 
mouth-nose thermistor shows intermittent apnea or hypopnea in both patients, but the response of the R-R interval, or CVHR, is blunted in patient 
B compared to patient A. This is reflected in the difference in the amplitude of the CVHR (Acv), 3.4 vs. 5.3 ln (ms)
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(Fig.  8). The prognostic value of Acv was independent 
of age, gender, diabetes, beta-blocker therapy, left ven-
tricular ejection fraction, sleep-time mean R-R interval, 
and Fcv. Along with earlier studies [66, 83], this indicates 
that Acv obtained from nocturnal ECG is an indicator of 
cardiac vagal reflex function, and its decline is an inde-
pendent predictor of increased mortality risk, common 
in post-MI, ESRD, and CHF patients.

Although the measurement of Acv requires the pres-
ence of CVHR, it can be obtained even in individuals 

without clinically significant frequency of CVHR (Fcv ≥ 
5/h). In the above study [73], the Acv calculated when ≥ 
4 CVHRs were observed per night had predictive power. 
The value of Acv, however, shows a large variation when 
Fcv is very low, thereby reducing the prognostic ability. 
This problem can be improved by adjusting the cutoff 
value of Acv according to the value of Fcv [82]. The high 
applicability ratio of Acv is the advantage of Acv com-
pared to HRT, which can only be applied to Holter ECG 
recordings (< 40%) that contain adequate VPCs.

Fig. 8  Mortality probabilities in four cohorts of patients stratified by the same cut-off values of the amplitude of CVHR (Acv; 4.0 and 3.0). CHF, 
congestive heart failure; ESRD, end-stage renal failure; MI, myocardial infarction. Modified Fig. 3 in reference [73]

(See figure on next page.)
Fig. 9  Trend grams (a‑d) and power spectra (e‑h) of R-R interval (RRI), pulse transit time (PTT), pulse interval (PI), and respiration (Resp) obtained by 
simultaneous recordings of ECG, finger-tip photoplethysmography (PPG), and nose-tip thermistor respiration in a patient with an implanted cardiac 
pacemaker with a fixed pacing rate (70 bpm). PTT was measured as time from ECG R wave to PPG presystolic foot point of each beat and PI as the 
interval between the foot points of consecutive pulse waves. PSD, power spectral density. Modified Fig. 1 in reference [84]
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Fig. 9  (See legend on previous page.)
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Is pulse rate variability a surrogate of HRV?
In recent years, the widespread use of wearable watches 
equipped with photo-plethysmograph (PPG) sensors 
has facilitated the measurement of pulse wave signals in 
daily life, and as a result, many studies have been pub-
lished that attempt to use pulse rate variability (PRV) as a 
substitute for HRV. However, there are serious pitfalls in 
applying the classical LF-HF framework to PRVs in daily 
activities. It is not only a problem of applying the classical 
framework obtained under controlled conditions to data 
under free-running condition, but also a problem caused 
by the essential difference between PRV and HRV.

PRV should be recognized as a different biomarker than 
HRV. HRV is one of the sources of PRV, but HRV is not 
the only source of PRV. The process from ECG R wave to 
PPG pulse wave involves several transformation steps of 
physical properties, such as those of electromechanical 
coupling and conversions from force to volume, volume 
to pressure, pressure impulse to wave, pressure wave to 
volume, and volume to light intensity, and many sources 
of fluctuation can modulate each of these processes [84]. 
In fact, there is evidence that shows discrepancy between 
PRV and HRV, such as that demonstrating the presence 
of PRV in the absence of HRV [85], differences in PRV 
with measurement sites [86, 87], and differing effects of 
body posture and exercise between them [88]. Figure  9 
shows our recent observation in an adult patient with an 
implanted cardiac pacemaker, indicating that fluctuations 
in R-R intervals, pulse transit time, and pulse intervals are 
modulated differently by autonomic functions, respiration, 
and other factors [84].

The HF of PRV is not the same as the HF of HRV, nor 
is LF or LF/HF. PRV may contain useful biomedical infor-
mation, but finding it requires an approach beyond the 
classical framework. For example, nocturnal PRV can be 
used to screen for SA by detecting cyclic variation of pulse 
rate (CVPR) [76]. In 41 patients who underwent diagnos-
tic polysomnography (PSG) for SA, PPG was recorded 
simultaneously with a wearable watch device. The median 
(IQR) AHI of patients was 17.2 (4.4‑28.4), and 22 (54%) 
patients had moderate-to-severe SA (AHI ≥ 15). SA epi-
sodes were accompanied by CVPR, a characteristic pattern 
of PRV similar to the CVHR of HRV. The hourly frequency 
of CVPR detected by the ACAT algorithm correlated with 
AHI (r = 0.81), but none of the time-domain, frequency-
domain, or non-linear indices of PRV showed a significant 
correlation. The CVPR frequency (> 11/h) was able to dis-
criminate patients with moderate-to-severe SA (AHI > 15) 
with 82% sensitivity, 89% specificity, and 85% accuracy. 
The classification performance was comparable to that 
obtained when the ACAT algorithm was applied to HRV 
during the PSG.

Conclusions
HRV analysis using the LF-HF framework has contributed 
significantly to the widespread use of HRV to assess auto-
nomic function, but this classical framework should only 
be used for HRV under tightly controlled conditions.

This framework is inappropriate for the interpretation of 
HRV and PRV measured under free-running conditions, 
such as those obtained with wearable sensors, and does 
not adequately capture the useful information contained 
therein. In order to use HRV and PRV for the assessment 
of autonomic function in daily life and to extract other use-
ful biomedical information from them, it is necessary to 
research and develop new means of capturing them that 
go beyond the classical framework. In this review, sev-
eral studies were presented as examples suggesting such 
approach.
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